Delivery of dexamethasone from bioactive nanofiber matrices stimulates odontogenesis of human dental pulp cells through integrin/BMP/mTOR signaling pathways

نویسندگان

  • Hyun-Chang Lim
  • Ok Hyung Nam
  • Mi-joo Kim
  • Ahmed El-Fiqi
  • Hyung-Mun Yun
  • Yoo-Mi Lee
  • Guang-Zhen Jin
  • Hae-Hyoung Lee
  • Hae-Won Kim
  • Eun-Cheol Kim
چکیده

Therapeutically relevant design of scaffolds is of special importance in the repair and regeneration of tissues including dentin and pulp. Here we exploit nanofiber matrices that incorporate bioactive glass nanoparticles (BGNs) and deliver the odontogenic drug dexamethasone (DEX) to stimulate the odontogenic differentiation of human dental pulp cells (HDPCs). DEX molecules were first loaded onto the BGN, and then the DEX-BGN complex was incorporated within the biopolymer nanofiber matrix through electrospinning. The release of DEX continued over a month, showing a slow releasing profile. HDPCs cultured on the DEX-releasing BGN matrices were viable, proliferating well up to 14 days. The odontogenic differentiation, as assessed by alkaline phosphatase activity, mRNA expression of genes, and mineralization, was significantly stimulated on the matrices incorporating BGN and further on those releasing DEX. The DEX-releasing BGN matrices highly upregulated the expression of the integrin subsets α1, α5, and β3 as well as integrin downstream signaling molecules, including focal adhesion kinase (FAK), Paxillin, and RhoA, and activated bone morphogenetic protein mRNA and phosphorylation of Smad1/5/8. Furthermore, the DEX-releasing BGN-matrices stimulated Akt and mammalian target of rapamycin (mTOR), which was proven by the inhibition study. Collectively, the designed therapeutic nanofiber matrices that incorporate BGN and deliver DEX were demonstrated to promote odontogenesis of HDPCs, and the integrins, bone morphogenetic protein, and mTOR signaling pathways are proposed to be the possible molecular mechanisms. While further in vivo studies are still needed, the DEX-releasing bioactive scaffolds are considered as a potential therapeutic nanomatrix for regenerative endodontics and tissue engineering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nanotopological-Tailored Calcium Phosphate Cements for the Odontogenic Stimulation of Human Dental Pulp Stem Cells through Integrin Signaling

Calcium phosphate cements (CPCs) are the unique class of inorganic injectables attractive for the repair and regeneration of hard tissues. Tailoring the crystallite properties of CPC, particularly to represent nanotopological feature, is favorable for stimulating biological reactions. Nanotopological tailoring has recently been achieved on CPCs by simply modulating the sizes of the initial part...

متن کامل

Magnetic Nanocomposite Scaffold-Induced Stimulation of Migration and Odontogenesis of Human Dental Pulp Cells through Integrin Signaling Pathways

Magnetism is an intriguing physical cue that can alter the behaviors of a broad range of cells. Nanocomposite scaffolds that exhibit magnetic properties are thus considered useful 3D matrix for culture of cells and their fate control in repair and regeneration processes. Here we produced magnetic nanocomposite scaffolds made of magnetite nanoparticles (MNPs) and polycaprolactone (PCL), and the ...

متن کامل

The controlled release of dexamethasone sodium phosphate from bioactive electrospun PCL/gelatin nanofiber scaffold

In this study, a system of dexamethasone sodium phosphate (DEXP)-loaded chitosan nanoparticles embedded in poly-ε-caprolacton (PCL) and gelatin electrospun nanofiber scaffold was introduced with potential therapeutic application for treatment of the nervous system. Besides anti-inflammatory properties, DEXP act through its glucocorticoid receptors, which are involved in the inhibition of astroc...

متن کامل

The Role of Thymosin Beta 4 on Odontogenic Differentiation in Human Dental Pulp Cells

We recently reported that overexpression of thymosin beta-4 (Tβ4) in transgenic mice promotes abnormal hair growth and tooth development, but the role of Tβ4 in dental pulp regeneration was not completely understood. The aim of this study was to investigate the role of Tβ4 on odontoblastic differentiation and the underlying mechanism regulating pulp regeneration in human dental pulp cells (HDPC...

متن کامل

The controlled release of dexamethasone sodium phosphate from bioactive electrospun PCL/gelatin nanofiber scaffold

In this study, a system of dexamethasone sodium phosphate (DEXP)-loaded chitosan nanoparticles embedded in poly-ε-caprolacton (PCL) and gelatin electrospun nanofiber scaffold was introduced with potential therapeutic application for treatment of the nervous system. Besides anti-inflammatory properties, DEXP act through its glucocorticoid receptors, which are involved in the inhibition of astroc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2016